1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
import numpy as np import matplotlib.pyplot as plt
def monte_carlo_integration(func, a, b, n=1000): x_samples = np.random.uniform(a, b, n) y_samples = func(x_samples) average_height = np.mean(y_samples) integral = average_height * (b - a) return integral
def f(x): return x**2
def analytic_integral_f(x,a): return (x**3)/3-(a**3)/3
a, b = -5, 5 x_points = np.linspace(a, b, 100) monte_carlo_values = []
for i in range(len(x_points)): integral_value = monte_carlo_integration(f, a, x_points[i], n=20000) monte_carlo_values.append(integral_value)
analytic_values = analytic_integral_f(x_points,a)
plt.figure(figsize=(10, 8)) plt.plot(x_points, monte_carlo_values, label='Monte Carlo Integral of $x^2$', color='blue', linestyle='--') plt.plot(x_points, analytic_values, label='Analytical Integral of $x^2$', color='red')
plt.title('Comparison between Monte Carlo and Analytical Integration of $x^2$') plt.xlabel('x') plt.ylabel('Integral Value')
plt.legend()
plt.grid(True)
plt.show()
|